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Allstraet-A solution is derived for the dynamic plastic response of an infinite plate subjected to a
general axisymmetric pressure pulse which varies both with position and time and is applied to a time­
varying area ofthe plate. An approximation formula is obtained for the final plastic deformation in
terms of simple integrals of the loading.

I. INTRODUCTION

In various structural applications in the nuclear reactor and other industries, design must
be based not only on normal operating loads but must also consider unusual transient
overloadings which may plastically deform the structure. Details ofthe spatial and temporal
distributions of these unusual loadings are not known in advance, so that analyses and
experimental simulations do not duplicate the actual loading conditions and may lead to
designs which are either unconservative or, at the other extreme, excessively conservative.

Although finite-element and finite-difference techniques can be used to obtain solutions
for specific problems in dynamic plastic deformation, they are often prohibitively expensive
to use for parameter studies, and important qualitative features of the results may be lost
in the abundance of numerical output. Moreover, the computational precision necessary
to numerically obtain convergent and stable solutions to these nonlinear problems requires
the specification of the loading and the material properties in much greater detail than that
in which they can be realistically predicted. Consequently, there is a need for the develop­
ment of approximation and bounding methods for dynamic plastic deformation of struc­
tures.

Approximation and bounding methods have two important functions. First, they can
be used to perform design and safety analyses ofstructural components, and, in particular,
to perform parameter studies over a wide range of design variables and loadings. Second,
they can be used to validate computer programs which predict dynamic plastic deformation
by strictly numerical methods. Because of the basic nonlinearity of the plastic response,
these programs are difficult to validate without having a variety of sample problems to
check against.

Much of the development of approximation methods[I-5] has emphasized impact
loadings or impulse loadings resulting from explosives attached to the structure. These
loadings are very short compared to the duration of the structural response, and the
simplifying assumption is made that the impulse is applied over zero time and imparts a
uniform initial velocity to the structure. However, in many applications the loading is
transmitted to the structure through a fluid, which slows the initial loading rate and spreads
the duration of the loading over a time period comparable to the structural response time.
Details of the' load history and spatial distribution then significantly affect the final plastic
deformation.

Two correlation parameters, the impulse and an effective load, were proposed[6] to
eliminate the effect of pulse shape on the final plastic deformation of some common
structural configurations. For each of these problems, the curves showing the final plastic
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deformation produced by a wide variety of pulse shapes are essentially collapsed to a single
curve if the impulse and effective load are used as correlation parameters. Since these two
parameters depend only on integrals of the loading, they are insensitive to perturbations in
pulse shape, which is encouraging because details of pulse shapes are difficult to experi­
mentally reproduce and measure. The loading in each case studied in [6] has a fixed spatial
shape and is applied to a fixed region of the body, but the magnitude of the loading is a
general function of time. In each case, the material is assumed to be rigid, perfectly plastic.
which is a common assumption in both static limit-load analysis and the development of
bounding methods for dynamic problems. A derivation of the two correlation parameters
from energy principles is presented in [7].

The problem treated in this paper is an infinite plate loaded by an axisymmetric
dynamic pressure which is an arbitrary function of position and time and which is applied
to a growing circular region of the plate. The material of the plate is assumed to be rigid,
perfectly plastic. A closed-form solution is obtained which is valid for a wide variety of
loadings. An approximate solution for the final plastic deformation of the plate is then
proposed in terms of three integral parameters of the loading. If the loading is specialized
to a product ofposition and time (which implies a fixed region ofapplication), these integral
parameters reduce to combinations of the two correlation parameters proposed previously.

Several comprehensive review articles on dynamic plasticity are available[8-15], so that
an extensive bibliography will not be given here. Some papers which are particularly relevant
to the problem discussed here are [16, 17], which treat a finite circular plate acted on by
a uniform dynamic pressure with various pulse shapes, and [18-21], which consider the
uniform pressure to be applied only to a central region. Reference [22] considers an infinite
plate loaded uniformly over a circular region and develops an approximate method of
solution for arbitrary pulse shape.

2. STATEMENT OF PROBLEM

Consider an infinite plate subjected to a dynamic pressure P(r, t), where, is the radial
coordinate and t is time, applied over a time-dependent circular region having radius R(r}.
Under the usual assumptions of small deflection theory of thin plates, the equations of
motion are

iJ2(rM,) aMe av
---'0-,0-2 - - -o-r- = p.r -at - ,P,

v = ow/at,

(2.1 )

(2.2)

where M,(r, t) and Ms(r, t) are the radial bending moment and circumferential bending
moment per unit arc length, respectively, p. is the mass per unit surface area, and V(r, t}
and W(r, t) are the lateral velocity and deflection. Let the radial and circumferential rates
of curvature be denoted by", and "e, respectively. Then

", = - 02V/o,.z,

"e = -(I/,)(oV/or).
(2.3)

The material of the plate is assumed to be rigid, perfectly plastic, and insensitive to
strain-rate. The limited interaction yield condition of Fig. 1 will be used here. The three
plastic regimes which occur in the plate are point A, segment AB, and point B of Fig. I.
From the yield condition and flow rule, the restrictions on the bending moments and rates
of curvature for these regimes are

Regime A: M, = -Mo, Ms = Mo, ", ~ 0, Ke ~ O. (2.4)

RegimeAB: -Mo < M, < M o, Me = M o, K, = 0, Ke ~ O. (2.5)
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Therefore,

RegimeB: Mr =M o, /(, ~ 0, /(8 ~ O. (2.6)

(2.7)

at every point in the plate where plastic deformation occurs.
The basic deformation mode has a hinge at r = 0 and a moving hinge circle at r = p(t).

The central hinge is in Regime B, the moving hinge in Regime A, and the region in between
is in Regime AB. The corresponding boundary conditions and restrictions are, at r = 0,

while at r = p(t),

M, = M o, oM,/or = 0, (2.8)

M, = -Mo,

ForO < r < p(t),

oM,/or = 0, V=O. (2.9)

-Mo <M, <Mo, oV/or ~ O. (2.10)

The conditions on M, given by eqns (2.9) and (2.10) assure that a maximum occurs at r = 0
and a minimum at r = p. If o2M,/or2= 0 at the moving hinge at some time during the
motion, a hinge band in Regime A begins to form there. Correspondingly, if o2M,/or = 0
at r = 0, a hinge band in Regime B will then begin to form in a region about the center of
the plate. The conditions on a moving hinge band are

M, = -Mo, oV/or ~ 0, (2.11)

for P.(t) ~ r ~ P2(t). For a central hinge band,

M,=Mo, oV/or ~ 0, (2.12)

for 0 ~ r ~ Po(t).
The plate is at rest until time ty when the yield load is first reached; the initial conditions

are thus

SAS 22:8-8

V(r, ty ) = W(r, ty ) = O. (2.13)
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3. SOLUTION FOR BASIC DEFORMATION MODE

Guided by the solution for the finite plate and eqns (2.9) and (2.10), the basic velocity
mode having a central hinge and a moving hinge circle is taken as

[
P(t) - rJV(r, t) = Vo(t) Pfi) , (3.1 )

where Vo is the velocity at the plate center. Substitution into eqn (2.1) and integration with
respect to r then gives, using eqns (2.7) and (2.8),

i' 1 if- fP(f, t) df + - f2 P(f, I) M, (3.2)
oro

where the dots denote differentiation with respect to time. The boundary conditions from
eqn (2.9) then imply

. 24Mo 12 iP
12 iP

p 2V+pVOP = - -- + - rP(r, t) dr - - r2P(r, t) dr,
J,l J,l 0 J,lp 0

p Vo+3VoP = 12
2
rp

r2P(r, I) dr.
J,lp Jo

Algebraic manipulation of eqns (3.3) gives

:1 (P2VO) = ~ [f: rP(r,/) dr-2Mo}

d 12 iP

-d (P3Vo)=- r2P(r,t) dr.
t J,l 0

(3.3)

(3.4)

The solution to eqn (3.4) is, using the initial conditions (2.13),

(3.5)

2 II rp(T) r2P(r, T) dr df
I, Jo

p(/) = I' iP(T) ,
rP(r,T) dr df-2Mo(t-t»

I, 0

{f faP(T) r2P(r, T) dr df - 2Mo(t - ty)T
V (I) - -...:...-..--=--:---c:--------=---

o - 2Jl[f f:(T) r2P(r, T) dr dfT
Substitution back into eqn (3.2) gives the radial bending moment distribution for
o~ r ~ p(/),

(
6r2 4r3) r'

M,(r, I) = I - ()f + {j3 M 0 - Jo rP(f, t) df

I i' (3r
2

2r
3
) iP

+ - ;2P(f, t) df+ -2 - -) rP(r, t) dr
r 0 p p 0

(3.6)

(
3r) 4r2) rp

+ --;14 - {j3 Jo r
2P(r, t) dr.
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Let L I and L 2 be defined by

02M
L 1 =--' at r = 0,or2

02ML
2
=__r at r = p(/).or2

Then

6IP 8IP
12 1L 1(/)=2" rP(r,t)dr- 3 r2P(r,/)dr-2"Mo--

3
P(0,t) <0,

PoP 0 p

6IP
12 iP

12L 2(/) = -2" rP(r,/)dr+ 3 rP(r,t) dr+2"Mo-P(P,/) >0.
PoP 0 P
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(3.7)

(3.8)

By eqns (2.8) and (2.9), a hinge band will form at the center of the plate if L 1 becomes
positive, and an outer hinge band will form if L 2 becomes negative.

The first of eqns (3.5) is an implicit expression for the hinge circle radius since p(t)
appears as an upper limit in the integrals. If P(r, t) has a long "tail" as r increases, then
p(/) may be less than R(/), and an iterative solution is needed; only a few steps are needed
for convergence because the values of the integrals are only weakly dependent on p for this
type of pressure distribution. For most of the pressure distributions considered in this
investigation, the hinge circle is outside the region ofload application for the entire duration
of the response. Equation (3.5) then gives an explicit expression for p since R(t) replaces
p(/) as the limit of integration.

Define F, G, IF, IG and Fy by

CR(I)

F(t) = Jo rP(r, I) dr,

CR(I)

G(/) = Jo r2P(r, I) dr,

IP(I) = I' F(T) dr,
"

Ia(t) = I' G(T) dr,
I,

Fy = 2Mo•

(3.9)

The quantity F(/) is the time-dependent force applied to a unit sector of the plate, and G(t)
is the moment of the pressure about the origin; IF and IG are the corresponding impulses
associated with F and G; and Fy is the force required to initiate yielding of the plate. For
the case when p(t) > R(/) for all I, eqns (3.5) and (3.8) become

2IG(/)

p(/) = IP(/)-(/-ly)F,'

V () = 3[IP(/)-(/-ly)Fy]3
o t 2JlJl;(/) '

6 8 1
L I (I) = p2 [F(/) - Fyl - pJ G(/) - 3P(O, I),

(3.10)

(3.11)

(3.12)
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6 12
L:(t) = - -, [F(r) - Fy ] + -3 G(t).

p- p
(3.13)

It is readily shown that L 2 is proportional to p for P > R. Consequently, an outer hinge
band does not fonn if P is an increasing function of time, but a band will begin to fonn if
the hinge circle starts to move inward. In general, P tends to increase if the applied force F
decreases, and vice versa. As a result, if the force is instantaneously applied and then decays,
no outer hinge band appears, but a more gradually applied force produces a hinge band.

The occurrence of a central hinge band depends strongly on the shape of the pressure
distribution on the plate. A central band usually does not occur if P decreases with r, which
is the most realistic situation. Consequently, the fonnulation for a central band will not be
pursued further.

The motion stops at time tf when Vobecomes zero. By eqn (3.11), tf is found from

(3.14)

Therefore, the average force applied to the plate during the defonnation is the yield
force Fyo

4. SOLUTION FOR OUTER HINGE BAND

Consider an outer hinge band which begins to fonn at time tb' Le. L 2(tb) = O. The hinge
circle at P(tb) ::: Pb spreads into a band between PI(t) and P2(t) where conditions (2.11)
apply. We will assume that the hinge band lies outside the region ofload application since
this simplifies the solution considerably and is the most usual case. The plate velocity at PI
will be denoted by VI(t), and the plate velocity at P2 is zero, so that

V(P2(1), t) ::: 0,

(4.1)

(4.2)

(4.3)

(4.4)

In the region PI ~ r ~ P2, M, = - M 0 and M8 = Mo. The differential equation (2.1) is then
equivalent to

av
J.l at ::: per, t) ::: 0,

since r ~ P.(1) > R(t) by assumption. Therefore,

(4.5)

for (4.6)

where the function Vb is determined by the remainder of the solution. By eqn (4.2),

which implies that P2 remains fixed, i.e.

(4.7;

(4.8:



while eqn (4.1) gives
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(4.9)

As PI moves inwards it generates values of Vb(r) until it reaches its minimum position P1m

at some time tm• It moves back outward then until it reaches its originallocation at some
time te such that

(4.10)

The hinge band now disappears and is replaced with a hinge circle p(t).
In the region 0 ~ r ~ PI(t), we take

(4.11 )

which satisfies eqns (2.10) and matches the hinge band solution at r = PI' For convenience,
define I(t) by

(4.12)

The substitution of eqns (4.11) and (4.12) into eqn (2.1), integration with respect to r, and
the application ofthe boundary conditionsM, = Moatr = oand M, = -Mo,aM,/ar = Oat
r = PI results in two equations in VoandJ; these become, after some algebraic manipulation,

24 36J1.J= -[F(t)-F] - -G(t).pl y p1

The bending moment distribution is given by

(
6r2 4r3

) (3r2 2r3
)

M(r t) = 1--+- M o+ --- F(t), , pi pt pi pl

( 3r
3

4r2) i'+ -4 - -3 G(t) - ;P(;, t) d;
PI PI 0

1 i'+ - ;2P(;, t) d;.
r 0

(4.13)

(4.14)

(4.15)

It can be shown (see analogous derivation in [17]) that a2M,/ar2 =0 at r = p I during
the interval tb ~ t ~ tm when p I is moving inward. Setting the second derivative ofeqn (4.15)
equal to zero at P. results in an equation which can be solved for PI to give

2G(t)
P.(t) = F(t)-Fy ' (4.16)

Equations (4.13) and (4.14) can then be integrated to give, using eqn (4.12),

(4.17)
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Let
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(4.18)

(4.19)

be the inverse relation to eqn (4.16). Then T(r) is the time when P I moved through position
r while traveling inward. Equations (4.9) and (4.17)-(4.19) yield

This completes the solution for the interval I b ~ I ~ 1m• The locations of the inner and outer
edges of the band are found from eqns (4.16) and (4.8), Voand VI are computed from eqns
(4.17) and (4.18), and eqns (4.6), (4.20) and (4.11) give the velocity distributions within the
band and between the plate center and PI'

In the interval 1m ~ I ~ leo the inner edge of the hinge band moves outward until it
again reaches its original position Pb' Equations (4.1)-(4.15) continue to hold, but now
o2M,/or2 > 0 and eqn (4.16) for PJ is no longer valid. Since PI moves back through previous
positions, Vb(r) is known for every location that p) occupies during the interval 1m ~ t ~ Ie

and the plate velocity V(r, I) is known from eqn (4.6) for every point in the hinge band.
Letting r = PI in eqn (4.20), we have from eqn (4.9) that

(4.21)

Using the definition ofj(t) given by eqn (4.12), we can rewrite eqn (4.14) as

Equations (4.13) and (4.22) are then equivalent to

(4.23)

(4.24)

From eqn (4.21),

V dVb _ 2- fT(pl) [F(/)-FyP dl _ ~ [F(T)-FyP dT
b - P I dp I - 2J1 I. G2(t) 2J1 G2(1) dp I

3PT [F(T)-Fy]4 dT
+ 4ii G3(T) dp I + VO(t b )· (4.25)
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By eqns (4.16), (4.17) and (4.19), for I b ~ T ~ 1m,

Since, by definition of T,

861

(4.26)

(4.27)

PI(I) = PI(n,
eqn (4.25) then becomes

(4.28)

Noting that

d 6 dT .
-d[ptVo(nl= 2p\p\Vo(n+-[F(n- F,l-dPh

I P PI

d 2 12 dT
dl[P?Vo(nl = 3p\p\ Vo(n + JiG(n dpl PI>

d[i'] dT-d [F(r)-F,} dr =F(t)-F,-[F(n-F'}-dPh
I T(p,) PI

d [i' ] dT-d G(r) dT =G(I)-G(n -dPI>
I T(pl) PI

we can integrate eqns (4.23) and (4.24) to give

(4.29)

(4.30)

(4.31)

(4.32)

The integration constants C I and C2 are both zero because T = 1m when I = 1m• Equations
(4.31) and (4.32) can be combined to give finally, using eqns (3.9),

2[IG(t)-IG(nl
PI(/) = Ip(t)-IP(n-(t- nF,'

3[Ip(I)-IP(n-(I- nF,p
Vo(l) = Vo(n + 2p[I

G
(I)-I

G
(nF '

(4.33)

(4.34)

for 1m ~ I ~ Ie. Equation (4.33) is an implicit equation for PI through eqns (4.19) and (4.26).
At 1 = Ie, PI returns to its original location Pb; since T(Pb) = Ib, we have from eqn

(4.33) that Ie satisfies

(4.35)

After Ie, the solution given by eqns (3.10) and (3.11) for the basic defonnation mode applies
until the motion stops at If.
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5. EXAMPLES

Examples of three categories of pulses will be presented here: pure impulse, loadings
which can be expressed as a product of a function of position and a function of time and
pulses applied over a time-varying region.

A. Pure impulse
The total force impulse IFf and moment impulse faf are, from eqns (3.9),

f'l fRIll
IFf = rP(r, t) dr dt,

I, 0

f'l fRIll
faf = r 2P(r, t) dr dt.

" 0

(5.1 )

The loading on the plate will be called a "pure impulse" if these impulses are applied
instantaneously at t = O.

Let V* be the initial central velocity for a pure impulse. Equations (3.10) and (3.1 I)
then give

where

V* = 3I]d2pnf,

p(t) = 2faff(hr- Fvt),

Vo(t) = V*[(IFJ-Fyt)fIFJP,

Wo(t) = W*{l-[(lff-Fyt)flff ]4},

(5.2)

(5.3)

Since FytJ = IFf by eqn (3.18), WO(tf) = W*. Consequently, w* is the final plastic defor­
mation at the center of the plate produced by a pure impulse characterized by IFJ,IGf.

B. Separable loading
The region of load application must be fixed for loadings which are expressible as the

product of functions of position and time. We will take

R(t) = R o,

P(r, t) = P o4>(r)ljI(t), 0 ~ r ~ R o,

= 0, r> R o,

(5.4)

with 4>(0) = ljI(O) = 1so that Po is the initial pressure at the center of the plate. The function
4> witl be called the load shape and the function ljI will be called the pulse shape. Equations
(3.9) become

IRO
F(t) = P oljl(t) Jo r4>(r) dr,

CRo
G(t) = P oljl(t) Jo r 24>(r) dr,

f' iROI,{t) = Po ljI(f) dl r4>(r) dr,
I, 0

f' iRofa(t) = Po ljI(f) dT r 24>(r) dr.
I, 0

(5.5)
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q,(r) = I-(rIRo)G, 0 ~ r ~ Ro,

I/I(t) = I-(tlto)b, 0 ~ t ~ to,

= 0, t> to,

(5.6)

for a > 0 and b > O. Figure 2 shows I/I(t) for various values of b. Letting a -+ 00 results in
a unifonn pressure distribution over the load region, and letting b -+ 00 results in a rect­
angular pulse shape in time. Define Foas the initial force on the plate; then

Fo= aPoR3/2(a+2). (5.7)

The fonn of the solution depends on the ratio FoIF,. If FolFy< (b+ I)lb, the deformation
stops before to. Substitution into eqns (3.10), (3.11) and (3.14) gives, with 't = tlto,

tf = to[(b+ I)(I-F,IFo)]llb,

4(a+ 2)FoRo(b + I_.b)
p(t) = 3(a+3)[Fo(b+ I-~)-Fy(b+ 1)]'

V () = 27(a+3)2[Fo(b+ I-~)-Fy(b+ l)J3t
o t 8(a+2)2(b+ 1)~RMb+ 1_~)2 '

[
2~ F, (Fy)2 (Fy)3 ]x 1 - (b+ I)(b+2) - 3 Fo+3 F

o
Q,(b,.r)- F

o
Q2(b, 't) ,

(5.8)
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Q (b r) = 2(b+ 1) it f df
I , 2 b+ 1 -b'r 0 -r

(5.9)

For FoIF, ~ (b+ 1)lb, the equations above for Ph Vo and Wo hold for 0 ~ 1 ~ 10 ; in the
interval 10 ~ t ~ 1" the solution is given by

b Fol o
If = b+l P'y

4(a+ 2)bFoRol o
p(t) = 3(a+3)[bFolo-(b+ I)F)'t]'

V ( ) = 27(a+3)2[bFo/o-(b+ I)F,I]3
o 1 8(a+2)2b2(b+ 1)#lraR3t3 '

W (t) = W (t) 27(a+3)2(b+ 1) 2F5/5[(_b_ _ Fy)4 _(_b_ _ Fyt )4J
a 0 a + 32(a+2)2b2J.lR3Fy b+ 1 Fo b+ 1 Foro .

(5.10)

The final plastic deformation at the center of the loaded region is then, for FolFy < (b+ 1)Ib

W (t ) = w.[l!!.- Fa _ 2(3b+4) 6FyQ (b !l.) _2F; (!l.)J
o f b+2 F b+2 + F I '1 F2 Q2 b't

y 0 a 0 0

with

and for FoIF)' ~ (b+ 1)/b,

(5.11 )

(5.12)

W ( ) = W*{1 _ 2(b+ 1)2 Fy [6(b+ 1)2 Q (b 1) _ 4(b+ 1)3J(F,)3
o If b(b+2) Fo + b2 I, b3 Fo

+[(b:
4
1)4 _ 2(b; 1)2 Q2(b, I)J(iY}, (5.13)

with

(5.14)

The quantity w* is again the plastic deformation which would be produced if IFf and faf
were applied instantaneously.

The integrals for QI and Q 2 can be readily expressed in closed form for b a small
integer or the reciprocal of a small integer; the integrations are easily done numerically for
other cases.

For a rectangular pulse (b - CXJ), QI = Q2 = 1, and eqn (5.13) simplifies to

(5.15)
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Fig. 3. Final plastic deformation as function of initial force for separable loading example.

Figure 3 shows Wo(t/)/W· as a function of Fo/F, for various values of b; it is not
necessary to specify the load shape <jJ(r) because its entire effect is included in W·. Since
W· characterizes the magnitude of the loading, the spread between the curves can be
attributed to differences in pulse shape.

In obtaining the solution for the loading given by eqns (5.6), we have assumed that
p(t) ;?:; Roand that neither a central hinge band or outer hinge band is formed. From eqns
(5.8) and (5.10), p(t) ;?:; Roif

F,/Fo > (1-a)/3(a+3).

No central hinge band forms if L,(t) < 0; using eqn (3.12), this is equivalent to

F, > 1 _ 2(a+2) [2(a+3)Jl/3.
Fo 3(a+3) a

No outer hinge band forms if L 2 > 0; from eqn (3.13), this is equivalent to

6F,b
p2(b+ 1- rb/~) > 0,

(5.16)

(5.17)

(5.18)

which holds for all positive b. Figure 4 shows the inequalities (5.16) and (5. t 7) and defines
the region for which the above solution is valid.

C. Varying load region
Consider loadings of the form

P(r, t) = Pot/l(t)<jJ(rfR(t»,

=0, r>R(t),

o~ r ~ R(t),
(5.19)
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0.1

Fig. 4. Region of applicability of solution for separable loading example as function of load shape
parameter a.

with

R(O) = Ro, 1/1(0) = 1, q,(0) = 1. (5.20)

To illustrate solutions with hinge bands, let

R(t) = R o(1 +t/to)', q, = l-r/R(t), (5.21)

and let I/I(t) be such that the force on the plate increases linearly from Fo to 2Fo in time to
and then decreases linearly to zero at time 3t 0, i.e.

Consequently,

F(t) = Fo(l +t/to),

= Fo(3-t/to),

= 0, t> 3to.

o~ t ~ to,

to ~ t ~ 3to, (5.22)

Po = 6Fo/Ra,
I/I(t) = (1+t/tO)I-2', 0 ~ t ~ to,

= (3-t/t o)(1 +t/tO)-2', to ~ t ~ 3to•

=0, t>3to.

(5.23)

Results will be shown for the three cases c = 0, ! and 1 ; these correspond to a fixed load
region, a region with a linearly varying area, and a region with a linearly varying radius,
respectively. Figure 5 shows I/I(t) for each case. Since F(t) initially increases, an outer hinge
band begins to fonn at t = 0, grows in size until tift, and then decreases until it disappears
at t" Figure 6 shows the band edge locations PI(t) and P2(t) = Pb and the subsequent hinge
motion p(t) for Fo = 1.25F. and c = 0, ! and 1. The plate velocities VO<t) at the center of
the loaded region and inner edge of the hinge band are shown in Figs. 7 and 8, respectively,
and the central defonnation Wo(t) is given in Fig. 9. Although all three loadings have the
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Fig. S. Pulse shapes for hinge band examples.
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same force history F(t) and associated impulse history I,(t), the responses differ significantly
in amplitude because the applied pressure is spread over larger areas as c is increased.

6. CORRELAnON OF RESULTS

The solutions to the problems discussed in Refs. [6, 17] for time varying loadings with
a fixed spatial distribution were shown to be closely approximated by functions of the
impulse and an effective pressure. The effective pressure was defined as the impulse divided
by twice the mean time of the pulse, with the mean time being the interval between the
onset of plastic deformation and the centroid of the pulse. For a pulse P(t), the impulse I,

12

II

10

9

8 Fo ·1.2~ F,

7

6

~
pz/Ro

4

3

2

3o 2
fifo

Fig. 6. HinF band histories.
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0.30

0.25

>0
0.20

:tl-O 0.150..0

0.10

0.05

o 2 3 4

1/10

Fig. 7. Velocity history at r = 0 for hinge band examples.

mean time tm• and effective pressure P, are

fll

1= P(t) dt,
I,

I f'ltm• = I (t-ty)P(t) dt,

"

0.025 .--------...,.......-----.,-------.---------,

(6.1)

0.020 Fo = 1.25 Fy

0.015

>

~I~o
0..

0 0.010

0.005

o

Fig. 8. Velocity history at r = PI for hinge band examples.

4
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Fig. 9. Deformation history at r "" 0 for hinge band examples.

These approximate solutions all had the form

Wo(t) ~ W*f(P./P,),

W* = C]2/P"

f(P./P,) -+ I as p./P, -+ 00,

(6.2)

where W* is the final deformation produced by a pure impulse, and C is a constant
depending on the problem geometry and spatial distribution of loading. An arbitrary pulse
thus produces essentially the same deformation as a rectangular pulse ofmapitudc p. and
duration 2t_. The form of the function/depends on the pulse shape used to determine it.
However, since the forms closely approximate each other, it does not matter which is chosen
and the solution for the rectangular pulse is usually the most convenient.

Guided by these previous solutions, we define a mean time and efFective force for the
infinite plate to be

1 f"tFm =T (t-t,)F(t) dt,
Ff "

(6.3)

with F(t) and /1Ydefined by eqns (3.9) and (5.1). A mean time associated with the moment
history G(t) is defined by

1 f"tGm = l (t-t,)G(t) dt,
Of "

(6.4)

and a separability parameter Xis defined by

(6.5)
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We will assume that the solution for the infinite plate can be approximated as

(6.6)

with

(6.7)
as in eqn (5.3).

A. Separable loading
Consider a pressure pulse applied over a fixed region Ro and expressible as in eqns

(5.4) as the product of a load shape 4>(r) and a pulse shape "'(t). Then, for a specific load
shape 4>(r), G(t) is proportional to F(t), i.e.

with

This implies

G(t) = CtF(t), (6.8)

(6.9)

x=0. (6.10)

Using the solution for the rectangular pulse given by eqn (5.15) to determine the form of
the functionj, eqns (6.6) and (6.7) become

Wo(tl) ~ W*(1-Fy/F.)3(1 +Fy/F.),

W* = 3/iJf8J.lCiFy,
(6.11)

which are analogous to eqns (6.2).
The approximation given by eqns (6.11) was found to be valid for a wide variety of

pulse shapes. In particular, the results shown in Fig. 3 for the loading given by eqns (5.6)
are shown again in Fig. 10 as a function of F./F1' The curves for a< b < ex:> fall between
those shown, and the curve for b = ex:> coincides with the correlation given by egns (6.11).
The effective force is

Fo b+ 1
F~-b-'

y

(b+2)F;
F. = 2(b+ l)Fy-bFo

- b(b+2) F for
- (b+I)2 0

for
Fo b+l
F<-b-'

y
(6.12)

B. Nonseparable loading
We wish to generalize the approximation given by eqns (6.11) to include loadings which

cannot be expressed as the product of functions of position and time, and especially, the
subset consisting of loadings applied over a time-dependent region of the plate. Solutions
for a variety of loadings with arbitrary parameters were investigated and it was found that
Xcould be used to characterize the relation between the different time-dependencies of F(t)
and G(t). The value of Xis small for physically realistic loadings and is zero for separable
loadings.



Dynamic plastic deformation of an infinite plate
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Fig. 10. Final plastic deformation as function of effective force for separable loading example.

Consider loadings of the form

with

P(r, t) = Pot/!(t)<fJ(rIR(t)),

=0, r>R(t),

°:S;; r:S;; R(t),
(6.13)

Then, for p(t) ~ R(t),

R(O) = R o, t/!(O) = I, <fJ(0) = 1.

F( t) = Pot/! (t)R 2(t)<fJ F,

G(t) = Pot/!(t)R 3(t)<fJG'

with <fJFand <fJG defined by

<fJF = I y<fJ(y) dy,

<fJG = I y2<fJ(y) dy.

More specifically, take

R(t) = R o[1 +P(tltoY],

<fJ(rIR) = 1-[rIR(t)]",

F(t) = Fo[1-(tlto)b], °:S;; t:S;; to,

= 0, t> to,

with

(6.14)

(6.15)

(6.16)

SAS 22:8-C

a> 0, b > 0, c> 0, p~O.
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Using eqn (6.13), 1jJ(t) is found to be

[I-(t/to)b]
ljJ(t) = [I + fJ(t/toYF'

= 0, t > to,

and

(6.17)

(6.18)

The initial decay rate of the applied force F(t) is rapid if b is small and slow if b is large.
Similarly, the initial growth of the radius R(t) of the loaded region is rapid if c is small and
slow if c is large. The radius grows from Roto Ro(1 + fJ) in time to, and the loading reduces
to the case given by eqns (5.6) when fJ = O.

For FolFy< (b+ 1)lb, the motion stops before 10 and

rf = Ifll o = [(b+ 1)(I-FyIFo)]I/b,

(b+2)F;
F'=2b ) b'( + I Fy - Fo

[2(b+ I)Fy-bFo]
IFm = If 2(b+2)Fy ,

!
2(b+ I)Fy-bFo + fJrJ [(b+ I)F. _ b(c+ I) F Jl

2(b+2) (b+c+2) }' c+2 0

tGm = If J'fJri bc
Fy + (b+C+I)[(b+I)Fy - C+IFoJ

For FolFy~ (b+ 1)lb,

rf = [b/(b+ I)] (FoIFy),

Fe = [b(b+2)/(b+ 1)2]Fo,

fJc(b 2+bc+ 3b+ 3c+4)
x= (c+ I) (b+c+ 1)[(c+2)(b+c+2)+2fJ(b+2)]'

(6.19)

(6.20)

(6.21)

Using eqns (6.20) to eliminate Fa and fJ in favor of F. and X, the solution for the final
plastic deformation at r = 0 is, for F.IFy ~ (b +2)/(b+ 1),

WO(tf) = W· [ 1+.tl Bn(b, c, X) (~JJ.
where W· is defined by eqn (5.3). The Bn coefficients are

24( _I)n (b+2)n{ (b+ I)2-n 2 rl r[H1(b, r)]4-n dr }
Bn(b,c, X) = (4-n)!n! b+ 1 I-n -b- (I-X) Jo [H

1
(b,r)-xH2(b,c,r)F ,

(6.22)
with

HI(b, r) = I-rbl(b+ I),

H 2(b,c, r) = {2(b+2)(c+ I)(b+c+ I)H,(b, r)+(c+2)(b+c+2) (6.23)

x [bc- (b+ I)(c+ I)H I(b, r)]rc }/[c(b2+bc+ 3b+ 3c+4)].
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The integrals in eqn (6.22) can be evaluated numerically, or after expanding in series in X'
they can be integrated in closed form for some combinations of band c. For small X, the
results for Bn depend only very weakly on band c, i.e.

Bib, c, X) ~ Bn(X).

Moreover, the Bn are interrelated such that

B1(b,c, X) ~ B(X)-3,

B 2(b, c, X) ~ 3- 3B(X),

B 3(b, c, X) ~ 3B(X)-I,

B 4(b, c, X) ~ - B(X),

and a good fit to the results is given by

Consequently,

(6.24)

(6.25)

(6.26)

(6.27)

which reduces to eqn (6.11) for X = O.
The solid curve on Fig. II shows Wo(I/)IW* for a = I, b = c = i, and {J = 1.875. This

combination ofcoefficients corresponds to X =0.1. and the dashed curve shows the approxi­
mation given by eqn (6.27) for this value of X. Results for larger values of band c fall
between the two curves.

Figure 12 shows pas a function of b for FolFy~ (b+ 1)/b and X=0.05. 0.1 and 0.2;
. the solid curves are for c = b and the dashed curves are for c = lib. We note that Xis small

for wide ranges of {J, band c. In general, X is a small quantity for physically plausible
loadings.

0.8

0.7

0.6

0.5
•
~
.....
~ 0.4-;0

0.3

0.2

0.1

o 2 3 4 5 6
F./Fy

Fig. 11. Final plastic deformation as function ofeffective force with X = 0.1 for growing load region.
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Fig. 12. Relationship between b, c, Pand Xfor growing load-region example.

The approximation formula was found to be valid for a wide variety of load shapes.
In particular, for the hinge band problems prescribed by eqns (5.21)-(5.23), the effective
force and the parameter X as determined from eqns (6.3) and (6.5) are Fl' = 1.47Fo and
X= 0, 0.08277 and 0.15098 for c = 0, ! and 1, respectively. Table 1 gives the final central
deflection computed from the exact solution and from the approximation of eqn (6.27) for
various combinations of c and Fo/Fy-

Equation (6.27) provides a good approximation to the exact solution for problems
where the loaded region grows over a finite time interval. The hinge radius pet) may be less
than R(t) for a significant interval if the loaded region grows indefinitely; it is then prefer­
able to solve eqn (3.5) iteratively for pet) and evaluate the exact solution.

Acknowledgmenl-one of us (C.K.Y.) would like to acknowledge the support of the Office of Basic Energy
Sciences, U.S. Department of Energy.

Table I. Comparison of exact and approximate solu-
tions for hinge band problems

Wo(l/)Jl{(Polt)

c Fo/F, Exact Approximate

0 1.25 0.6079 0.5597
0 2.5 3.776 3.756
0 5.0 11.223 11.218

1{2 1.25 0.3129 0.3022
1{2 2.5 1.9244 1.9217
1{2 5.0 5.5288 5.5237
I 1.25 0.1631 0.1599
I 2.5 0.9681 0.9590
1 5.0 2.6524 2.6325
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